

Engineering Standards and Design Practices

● ASTM E1926-08: Standard Practice for Computing International

Roughness Index of Roads from Longitudinal Profile Measurements

● RFC 2616: Hypertext Transfer Protocol -- HTTP/1.1

● ECMA-404: The JSON Data Interchange Syntax

● Real-time operating system (RTOS) for small-scale embedded systems
● Agile-like environment with Kanban elements for software development

process

Summary of Requirements

● Create a on-board device that calculates road roughness (IRI)

● Additional features include taking weather/GPS Information

● Total cost of device <$100 in order to outfit DoT vehicles

Applicable Courses from Iowa State University Curriculum
● CPRE 288

● CPRE 388

● EE 201

● EE 230

● COMS 227-228

● COMS 319

● PHYS 221

New Skills/Knowledge acquired that was not taught in courses
● Microcontroller programing

● cloud storage

● Sensor data reading

● On-the-fly Calculation on the cloud

● USB readings

SDMAY20-32 1

Table of Contents
1 Introduction

 1.1 Acknowledgement 4

 1.2 Problem and Project Statement 4

 1.3 Operational Environment 4

 1.4 Requirements 4

 1.5 Intended Users and Uses 5

 1.6 Assumptions and Limitations 5

 1.7 Expected End Product and Deliverables 6

2. Specifications and Analysis

2.1 Proposed Design 6

2.2 Design Analysis 9

2.3 Development Process 9

2.4 Design Plan 9

3. Statement of Work

 3.1 Previous Work And Literature 10

 3.2 Technology Considerations 11

 3.3 Task Decomposition 11

 3.4 Possible Risks And Risk Management 12

 3.5 Project Proposed Milestones and Evaluation Criteria 13

 3.6 Project Tracking Procedures 13

 3.7 Expected Results and Validation 13

4. Project Timeline, Estimated Resources, and Challenges

 4.1 Project Timeline 14

 4.2 Feasibility Assessment 15

 4.3 Personnel Effort Requirements 15

 4.4 Other Resource Requirements 16

 4.5 Financial Requirements 16

5. Testing and Implementation

 5.1 Interface Specifications 17

 5.2 Hardware and software 17

SDMAY20-32 2

 5.3 Functional Testing 17

 5.4 Non-Functional Testing 18

 5.5 Functional Decomposition 18

 5.6 Results 18

6. Closing Material

 6.1 Conclusion 19

 6.2 References 19

 6.3 Appendices 19

List of figures/tables/symbols/definitions

Definitions

International Roughness Index (IRI) is a standardized measurement of road roughness
used by transportation departments nationally and abroad. It is generally described as the
amount of vertical variation per unit length of road. IRI is measured typically in meters per
kilometer, where acceptable values vary based on speed travelled by the measuring device.

Program for Sustainable Pavement Engineering & Research (PROSPER) is the organization
at Iowa State responsible for proposal of the project and support for the design team.

The Iowa Department of Transportation (Iowa DOT) is the transportation authority
working with PROSPER to develop and utilize the device outlined in this report.

Symbols

ms - sprung mass

mu - unsprung mass

ks - suspension spring constant

kt - tire spring constant

cs - suspension damping

av - vertical acceleration

Figures

Section 2.1, Figure 1: Black Box Concept Diagram

Section 2.1, Equation 1: IRI Calculation through Vertical Acceleration

Section 2.1, Figure 2: Quarter-Car Model

Section 2.1, Figure 3: Concept Diagram for Full Design

Section 2.1, Figure 4: Front-End Application Visual Concept

Section 5.5, Figure 1: Functional Decomposition Chart

SDMAY20-32 3

Section 5.6, Figure 1: Final Black Box Device

Section 5.6, Figure 2: Z Axis Acceleration Data, Constant Speed

Section 5.6, Figure 3: Z Axis Acceleration Data, Variable Speed

Section 5.6, Figure 4: Final IRI Measurements with Filter Comparison

Section 5.6, Figure 5: Loosely Bound XY-Acceleration Tolerance IRI Results

Section 5.6, Figure 6: Tighter Bound XY-Acceleration Tolerance IRI Results

Section 5.6, Figure 7: Vehicle Speed and Travel Distance During IRI Sample Comparison

Section 5.6, Figure 8: Travel Distance vs. Vehicle Speed Linear Analysis

Section 5.6, Figure 9: User Interactable Web Form

Appendix B, Figure 1: Embedded Code Flow Diagram

Appendix B, Figure 2: Back End Relation Diagram

SDMAY20-32 4

1 Introduction

1.1 ACKNOWLEDGEMENT

This project is being completed by Iowa State University Senior Design group SDMay20-32 in
collaboration with the Program for Sustainable Pavement Engineering & Research (PROSPER) at
the Institute for Transportation, Department of Civil, Construction and Environmental Engineering
(CCEE), Department of Electrical and Computer Engineering (ECpE) at Iowa State University.

Iowa State University and Dr. Halil Ceyan will be generously donating the financial aid required for
this project.

1.2 PROBLEM AND PROJECT STATEMENT

The Department of Transportation wants to take regular IRI readings of the many roads of Iowa to
identify excessively rough stretches of road. An inexpensive on-board device that can be outfitted
on DoT’s fleet of vehicles that works with minimal human input. The data must also be stored on a
remote server.

Our task for this project is to create a device that the Iowa DoT can outfit their fleet of vehicles
with to take continuous data, throughout the year, on the roads within Iowa.

The finished project is a ‘vehicle black box’ that collects data on road roughness at any given
location and stores it on a remote server where the IRI is calculated. The web server will also
display IRI readings across different roads.

1.3 OPERATIONAL ENVIRONMENT

Although the black box will be stored inside the vehicle, the device and the sensors within are
required to work in the summer and winter. We will be assuming the vehicle has minimal heating
and AC to insure the durability of our device. The black box will be fastened/secured, but will be
exposed to light dust, and general wear and tear of driving conditions.

1.4 REQUIREMENTS

Functional Requirements

● International Road Index calculations
● GPS readings
● Web server with automatic data transfer via cell signal (GPRS)

Financial Requirements

● Minimize cost as much as possible.
● No maximum cost requirement to specifically follow, but devices should be affordable for a

fleet of vehicles.

Environmental/Durability Requirements

● Weather resistant
● Shock proof since the black box will be on poor roads

SDMAY20-32 5

● Low maintenance

Electrical Requirements

● Use power from the car to provide between 7 and 12 volts to the microcontroller

1.5 INTENDED USERS AND USES

The end users of the black box component will be any person operating a car in the Iowa DOT fleet.
These users will not need to use the black box system as it will automatically upload the data to the
cloud server. There will also be USB integration for smartphones that will allow for testing. This
will be helpful to our team as well as any other team that may use our project at the Iowa DOT.
There will also be backups on a USB hard drive/ SD card which can be used to get raw data off of
the black box in the event a software failure occurs.

1.6 ASSUMPTIONS AND LIMITATIONS

Assumptions

● Maximum price should be as low as possible
● Web server, only a few users viewing data, and only a few devices reporting data

The web server is expected to service a fleet of vehicles, but for the purpose of our project, a smaller
scale is more practical to start out with. Future scaling of the server is expected, and on-board
hardware is capable of such scaling.

Limitations

● Sensors must be contained inside the black box
● Minimal human-input to start device
● On-board battery powered

Limitations are tied to design constraints. One obstacle that needs to be overcome is achieving
accurate IRI readings while keeping the sensors within the box. Further research is needed to find
ways to minimize error.

1.7 EXPECTED END PRODUCT AND DELIVERABLES

This project has one physical and one software deliverable for the end user. The physical
deliverable is the vehicle black box, which is a housing for a microcontroller and sensors constantly
taking IRI measurements and collecting GPS location. The black box will store data locally on a
microSD card.

The data is uploaded by the user to the cloud, then the raw acceleration data is filtered and
converted to IRI measurements for stretches of road based on GPS coordinates. This data
processing is done on a Microsoft Azure server using Javascript, and stored in a MySQL database.

2. Specifications and Analysis

2.1 PROPOSED DESIGN

To take IRI data of roads, various data is needed to conduct these calculations. This includes
coordinates from a GPS unit to determine the location of the vehicle, and accelerometers to record
the up and down motion of the road. A microcontroller that supports both of these sensors would

SDMAY20-32 6

be a suitable solution that would fit inside an enclosure within the vehicle. With the addition of a
GSM unit to the microcontroller, data taken from can be transmitted to a web server for further
calculations and storage. A concept diagram for the black box is given as Figure 2.1-1 below.

Figure 2.1-1: Black Box Concept Diagram

The web server allows the calculations of IRI to be done remotely, removing a large form of
processing power from the microcontroller. This allows the black box to function with lower power
and can minimize the risks associated with the device being exposed to intense climates inside the
vehicle.

In the planning phase of our project, research on available microcontrollers and sensors was
conducted to determine the hardware requirements for the intended features of our device. The
microcontroller must have a sufficient number of input/output (I/O) pins to support all the
features of our black box, as well as the appropriate power capabilities for our sensors. Arduino
microcontrollers support a large catalog of independent sensors called Shields. This is useful in
outfitting our black box with only the sensors necessary to our design, and to avoid spending on
components that would otherwise be unused. The Arduino Uno was selected because it matched
these requirements without offering more processing power than is needed, or pins that it wouldn’t
be used. The Uno also has a large number of supported libraries while similar microcontrollers
were intended for more niche uses.

IRI can be calculated using multiple different methods. The quarter-car model calculates IRI by
positioning two accelerometers set up to the vehicle’s suspension. Other methods are similar, but
involve placing sensors over all wheels, or both sides. Another method of IRI calculation utilizes
laser sensors to measure the distance from the car to the pavement to take extremely accurate
measurements of the roughness, but costs significantly more money than its counterparts. In our
calculation of IRI, all sensors are limited to the enclosure of the black box inside the car.

Instead of considering the suspension of each car, we will be using the quarter car model with
“golden car” suspension, where the values representing sprung mass ms, unsprung mass mu,
suspension spring constant ks , tire spring constant kt, and suspension damping cs are set to constant
values. The constant values must be such that: mu/ms is 0.15; ks /ms is 63.3; cs /ms is 6.0, and kt /ms is
653. The black box’s goal is widespread data of many roads instead of overly accurate data on only a
few roads, so the golden-car is close enough to the average car that it will be an easy and accurate
estimator.

SDMAY20-32 7

For the purposes of this project, the accelerometer will be oriented so that the Z-axis is the only
axis which records relevant acceleration in the car, since vertical acceleration is an indicator of road
roughness (Yuchuan, 1). The conversion from vertical acceleration to IRI, generally, is:

Equation 2.1-1: IRI Calculation through Vertical Acceleration

where S represents the distance travelled over the time interval from tstart to tstop and av is the
average vertical acceleration over the time period. The goal is to make the time periods minimal
and the speed constant across the time period. Double integration of acceleration across the
interval will return the difference in velocity from tstop to tstart, so a second integration function will
return the average relative vertical position over the time interval. The relationship between each
data point is normalized using the golden-car model to find the distance tires travel based on cabin
movement, and the change in vertical height is then divided by the distance travelled by the car to
convert the value into an IRI ratio representation. In this way, lower vertical acceleration values will
return lower IRI values, and acceptable IRI values are dependent upon speed travelled. Logically, a
car travelling slower will experience more roughness due to more time for tires to change vertical
location. Therefore an acceptable IRI value for a car travelling low speed is higher than an
acceptable IRI value for a car travelling higher speed.

Figure 2.1-2: Quarter-Car Model

The sprung and unsprung masses represent the mass of the car and the mass of the tire, with the
springs in between the masses representing suspension, and the spring beneath the unsprung mass
representing the stiffness of the tire.

Since IRI is calculated by integrating acceleration data in the sprung mass, an accelerometer must
be placed in each vehicle intending to measure road roughness. The microcontroller will allow
accelerometer and GPS readings which will be polled relative to the speed of the car, since IRI
standards call for polling every 300mm. The raw accelerometer and GPS data will be buffered onto
a local removable microSD card.

The server will run as an Apache web server, using C code to receive the raw data from the black
box. The code will be parsed into a SQL table, then converted to IRI using Javascript. Javascript will

SDMAY20-32 8

be a lightweight way to implement difficult calculations, and is typically compatible with web
servers. The parsed data will be placed into another SQL table. A concept diagram of the design is
given as Figure 2.1-3 below.

Figure 2.1-3: Concept for Design

The design is meant to be scalable, where many black boxes will interface with the back-end server.

The front-end design, although optimistic, will run on the OpenLayers map API and make requests
to the SQL table to retrieve IRI data. The OpenLayers API is free, open source, and feature-rich,
making it a good candidate for a front-end display tool. A visual conceptualization of the front-end
application is shown below.

2.2 DESIGN ANALYSIS

Research into microcontrollers and sensors has allowed us to purchase parts at reasonable cost. IRI
calculations were determined using a physics-based approach that uses a quarter-car standard
model of IRI calculation. It’s necessary to perform some filtering on accelerometer data to reduce
noise and drift caused by the electronics. Our initial idea was to use hardware filtering to subtract
low and high frequency data, but the implementation proved challenging, and software filtering is
cheaper. For software filtering, we will use Fourier transforms to compare acceleration versus
frequency, where low and high frequencies will be ignored, working as a bandpass filter. The exact
cutoff frequencies will be determined experimentally. In addition to a software implementation of a
bandpass filter, a moving average for acceleration values can also be applied to increase the
accuracy of accelerometer data.

2.3 DEVELOPMENT PROCESS

For this project, we will follow an Agile development process and more specifically a Kanban
approach. This will help us to focus on only a few things at once to get them tested and working
before trying to tackle new functional requirements. Kanban will be better solution for us rather
than the Scrum model because with our busy schedules, we cannot afford to meet as often as the
Scrum model entails. We will most likely only be able to meet one or two times per week. GitLab
has an Agile board included in its software that we will utilize for this process.

SDMAY20-32 9

2.4 DESIGN PLAN

Transmitted using cellular data, raw data containing timestamps, GPS coordinates, and
acceleration values will be uploaded to a web server which will perform data processing to convert
the raw data into IRI values for corresponding GPS coordinates. In addition to this, the web server
will send the processed data to a client application and use the OpenLayers mapping API to display
for user interpretation.

There are 3 main use cases for the black box: installation in vehicles, manually uploading data to
the Azure server for processing, and using the client application which displays IRI data across
roads.

To address the first use case, installation of the black box, the user will install the device in a
predetermined suitable location. This will need to be above one of the four wheels of the vehicles.
After connecting power to the black box, GPS and Accelerometer data, the device will begin
collecting and transmitting.

The second use case is in case of device failure. In the event of a hardware failure, or data from the
black box could not be transmitted, a user can manually retrieve data from the SD card and upload
the data to the server. The local data on the SD card will include timestamps, GPS locations, and
instantaneous acceleration values. From there, the server will process the data as if it were
transmitted.

The third use case is the user interpreting the processed IRI data. The back-end of our web server
will automatically determine when the vehicle is driving and suitable IRI calculations can be
performed. IRI data will be displayed on the front-end. The most current data will be displayed
first, while data from past months can also be displayed. The user will be able to access the web
server from any computer, or mobile phone.

The server back-end will process data to calculate IRI values across the available GPS locations,
assign them to the nearest roads, and allowing the creation of an interactive map displaying known
IRI values on roads to address the third use case of the design.

3. Statement of Work

3.1 PREVIOUS WORK AND LITERATURE

Currently there exists a variety of mobile apps such as Roadroid that calculate the IRI of roads using
the sensors built-in to a mobile phone (Roadroid, 2019). Roadroid also takes photos of the road and
displays a map of the recorded data. Although the app shares features that will be included in our
device, the medium and methods of taking and transmitting the data will be different. One of the
problems with RoadRoid is that the user must own a smartphone that is capable of taking data.
When outfitting potentially hundreds of vehicles with a device to calculate IRI, the potential issues
of using a smartphone are greater. The expectation of someone using their personal phone to
collect data is unfeasible in this scenario and providing smartphones for all vehicles will be too
expensive. Another added benefit of a black box, is that once it is installed in the vehicle, no other
input is needed to continue data collection or transmission.

A significant amount of research into IRI calculation and we have found that the double integral
method to be the one we want to use. The double integral method outlined in Equation 1 uses an
accelerometer to get the vertical acceleration while driving. This will require a band pass filter for

SDMAY20-32 10

the initial acceleration data, then another for after the first integration, and one more for the final
integration. This is because the integration produces drift every time. In the beginning there will
also be noise produced.

Hardware components were selected carefully. To calculate vertical acceleration for IRI
calculations, an accelerometer that can withstand g-forces that are reasonable for a bumpy drive is
needed. An 8-g accelerometer was chosen because a car should never accelerate in any direction
faster than 8 gs, and it is low enough to maintain accurate measurements for lower values. Digital
accelerometers are more popular and sparkfun.com states that they “are less susceptible to noise”
(sparkfun.com, 2019). As for GSM unit, the main factor in our decision was the price point. Arduino
supports multiple GSM modules, however, the newer models that support 4G communication were
too expensive for our targeted price point, and unnecessary for our application. The Fona 808
supports 2G communication, and also includes a built-in GPS unit. At a lower price, this module
was an obvious choice for our device.

3.2 TECHNOLOGY CONSIDERATIONS

The black box will be built on some microcontroller with modular sensors. Because of the
budgetary requirements of the design, the cheapest reasonable microcontroller was considered.
Arduino systems were compared with Raspberry Pi systems. Although the Raspberry Pi is more full
featured in terms of memory and compiler ability, various versions of the Arduino are cheaper with
sufficient functionality.

In terms of accelerometers, the weakness of analog output accelerometers is that they produce
more noise than their digital counterparts. Throughout investigation of accelerometers available, it
was also evident that many of the digital accelerometers also use the SDA pin on the Arduino. This
makes it very easy to hookup and use as there are many libraries available for using an
accelerometer in this way.

The GPS/GSM module was chosen for its cost and functionality. With a resolution of 2.5 meters for
GPS readings and 2G support, it meets our requirements for data collection and transmission. 2.5
meter resolution means it will be easy to correlate coordinates with nearby points on roads when
processing data.

3.3 TASK DECOMPOSITION

The tasks breakdown will follow the project timeline. After a period of literature review, the
microcontroller will be selected so that each other black box component can be researched and
ensured compatible with the controller. During this time of device research, IRI measurement
parameters will be known, and code will be built around them. Actual hardware interfacing and
embedded design will be accomplished at the end of the first semester of the project once
components have arrived.

1) Literature Review
a) IRI interpretation
b) IRI theoretical calculation
c) IRI actual implementation
d) Component consideration
e) Software consideration

SDMAY20-32 11

2) Sensor Configuration
a) Testing accelerometer and analyzing outputs
b) Testing GSM/GPS module and analyzing outputs
c) Testing Arduino interfacing

3) Assembly
a) Prototyping with breadboards
b) Re-testing components and interfacing with Arduino

4) Coding
a) Embedded design
b) Embedded implementation
c) Back-end data handling design
d) Data transport design
e) Front-end data handling design
f) Data transport implementation
g) Back-end data handling implementation
h) Frontend data handling implementation

5) Testing
a) Test interfacing with each hardware module versus expected values
b) Test data transport reliability
c) Test data transport speed
d) Test back-end data processing for IRI calculation accuracy
e) Test back-end data processing for proper GPS coordinate-to-road assignment
f) Test front-end UI with webdriver
g) Test front-end with dummy back-end data
h) Test front-end with real implementation

3.4 POSSIBLE RISKS AND RISK MANAGEMENT
RISKS

● Technical Risk:
One or more components might not interact correctly.

● Cost Risk:
Implementation may be relatively cheap for prototype, but for mass production expensive

● Scheduling Risk:
The project might not adhere to the expected milestones or timeline perfectly

● Sustainability Risk:
The 2G network will be disabled at the end of 2020, but the black box relies on 2G for
proper function and minimal cost

Risk Management

● Technical Risk:
Make sure the components have reliable and reproducible behavior, and try to minimize
issues during prototyping and coding.

● Cost Risk:
Minimize requirements for human interaction, consider costs for mass purchasing,
document process thoroughly so as to create a easier set-up in each fleet vehicle

SDMAY20-32 12

● Scheduling Risk:
Attempt to work with contacts to overcome challenges as they come up

● Sustainability Risk:
Attempt to make the GSM device as modular as possible, so that future iterations of the
black box can be easily switched to 3G or 4G networks

3.5 PROJECT PROPOSED MILESTONES AND EVALUATION CRITERIA

● The first milestone will include a fully functional and assembled Arduino. This will include
all modules such as the accelerometer, GSM and GPS, and SD card modules working 100%.

● The second milestone will be of a working IRI calculation. Since the web server may not be
ready quite yet, the data will be saved to the SD card for inspection. This milestone will
include setting automated intervals for retrieving data at each 300ft as well as having code
to take that data a retrive the IRI calculation from it. We will use data that has been
previously collected by PROSPER to compare our results.

● The third milestone will be to have a web server that the Arduino assembly will be able to
contact. The Arduino will need to be tweaked to send data at the automated retrieval
points already created. The web server will then take this data and handle the IRI
calculations and save them into a database.

● The final milestone will include creating a user interface to interact with the back-end to
see IRI calculations on the roads around Iowa. For this, we are using a map API called
OpenLayers and we will need to make sure that the points on the map correlate to where
the user drove.

3.6 PROJECT TRACKING PROCEDURES

We use GitLab to track our work through the semester, uploading code and maintaining problems
through their ticketing system. This makes it easier to see what everyone is working on and to
access their contributions provided they push code every time they work on it.

3.7 EXPECTED RESULTS AND VALIDATION

The desired end product will be a closed system device which sits inside any car and connects via
USB to a power source to measure road roughness and transmit IRI data based on GPS location to
an off-board storage location.

At the highest level, using the black box on roads of various roughnesses and comparing
measurements with alternative measurement devices, such as the Roadroid app and laser truck rig,
will give us a good idea of the accuracy of our system.

Back-end data processing validation will be done using dummy data whose IRI values are
calculated by hand. This will allow comparison of code accuracy versus real calculations. Each
function coded on the back-end will be subject to rigorous unit testing including testing of edge
cases.

Frontend processing will be similar, where known dummy data is fed into the code and expected
versus actual results are compared. Unit testing will again be rigorous.

SDMAY20-32 13

Data collected by the laser truck rig will be able to get processed through our back-end code and
front-end to compare to our own hardware and validate hardware.

4. Project Timeline, Estimated Resources, and Challenges

4.1 PROJECT TIMELINE

Semester 1

By 10/14/19 Literature review & background research

By 10/21/19 Microcontroller analysis, System/Code planning

By 11/4/19 On-board sensor research, software/hardware compatibility

By 11/18/19 GPS study, Early code ‘rough drafts’

By 11/25/19 GSM research, finalize component list for purchasing

By 12/2/19 Early prototyping, Code Testing

Semester 2

By 1/13/20 (over break) Testing individual components

By 1/27/20 Assemble Arduino and functionality test for components

By 2/17/20 Implement data sampling rate

By 2/24/20 Implement internal storage

By 3/2/20 Communicate with web server

By 3/9/20 Database integration

By 4/6/20 Working model with IRI data sent to remote server using GSM +
long range testing to simulate real-life conditions

By 4/27/20 User accessible website with easy to view data, and final touches to
make device user-friendly

A long initial period of literature review is required to attain familiarity with the project details. The
IRI calculation is the crux of the project, and understanding its calculation is crucial to hardware
selection. The code will perform the actual calculation of IRI, so having a general idea of the
translation of math to code will allow a smooth implementation of hardware. Then, once we know
what data our code will need we’ll be able to begin selecting parts to produce this data, but
selecting the right parts for the best prices will take some time.

SDMAY20-32 14

We’ll select a GPS module as we begin our coding efforts. We’ll also select a GSM module and finish
up the remaining component purchasing over the following weeks. Very early prototyping should
begin by the end of the semester, aiming to obtain a bit of familiarity with the hardware while
inspecting our code’s interaction with the modules.

4.2 FEASIBILITY ASSESSMENT

A successful project will be as follows:

1. The Arduino is capable of reading vertical acceleration data and ignoring any data during
periods of the car’s acceleration in the XY-axes, then writing this vertical data to a
removable flash device.

2. The web server is scaled to be able to handle potentially hundreds of requests at the same
time. We do not want the web server to unexpectedly stop or stall for a significant duration
of time.

3. The web server is able to produce meaningful IRI measurements for reasonable sections of
road.

4. The UI is able to output the calculated IRI measurements.

4.3 Personnel Effort Requirements

Task Effort Required Explanation

Literature Review 10hrs/wk,
7+wks

Literature review is the foundation of our project.
Understanding requirements and calculations allows
us to create a functional project, so substantial time
is devoted to getting a thorough understanding of
theory

Microcontroller
Selection

4hrs/wk, 2wks Microcontroller selection will take a couple of weeks
to complete as it will be the basis of our circuitry.
We just need to make sure that the selected
microcontroller will have enough pins to connect all
of the shields that we will need.

Internal Sensor
Selection

4hrs/wk, 4wks The non-GPS/GSM sensors will need to meet
specific requirements for measurement precision,
and must also adhere to pricing standards.

GPS+GSM/GPRS
Device Selection

2hrs/wk, 3wks We will select the components required for the
project, and start working on implementation of the
GSM module, we will also work on the back-end in
this portion

Early Prototyping /
Tests Generation

10hrs/wk, 2wks Early prototyping will require a couple weeks of
dedicated time outside of testing during our initial
device setup. Testing IRI calculations will likely
require revision as we improve the accuracy of our
device.

Testing individual 15hrs/wk, 2 wks Testing of each component will first require getting

SDMAY20-32 15

components the microcontroller configured, then wiring all of
the components to it one after another.

Assembly and group
component testing

15hrs/wk, 2 wks Assembling all of the components will need to be
carefully done looking at all the datasheets provided
with the components.

Data sampling rate
implementation

15 hrs/wk, 3 wk Fine tuning of the sampling rate will take some time
as we will need to test it rigorously to start when
needed (20+ mph only) and end when needed. This
sample rate also needs to be variable to account for
speeding up as the samples need to be 300mm apart.

Internal storage
implementation

10hrs/wk, 1 wk This part should not take too long as we will just be
storing the values obtained in the previous task to
the internal storage (SD card).

Sending to server 10hrs/wk, 2 wk Sending information to the server will first require
setting up post requests to the back-end server.
Then we can just filter in these post requests one
after another.

Storing in database 10hrs/wk, 1wk Storing values to the database will only require
setting one up and routing in the information. New
values should overwrite old values.

IRI calculation
implementation

15hrs/wk, 5wks This will take the most time as it is more unfamiliar
to us. It will also require a great deal of testing to
make sure it is accurate.

Front-end web
application

10hrs/wk, 4 wks The front-end web application will be very simple
and just provide a map with IRI and speed values
along with some color coding. This is again a
stretched goal and we may have to continue other
work instead if it gets bumped back.

4.4 OTHER RESOURCE REQUIREMENTS

One potentially overlooked resource is the manpower required to assemble multiple devices and
set them up for IRI readings and server communication, as well as vehicle installation. In addition
to this, collecting data on roads throughout Iowa we will require the assistance of Iowa DoT
employees.

4.5 FINANCIAL REQUIREMENTS

The estimated cost for our device $100. The cost of using a cloud server to receive data and a mobile
data plan to transmit data from our device is not included in this estimate. As mobile data
infrastructure changes (2G being discontinued in favor of 4G) could also increase the cost of this.
However, setting up a singular data plan for a range of devices could offset these costs.

SDMAY20-32 16

5. Testing and Implementation

5.1 INTERFACE SPECIFICATIONS

The black box will collect accelerometer data, timestamps, and GPS coordinates, retrieve the data
from removable storage, and send this data over via http to a cloud server. The raw data will be
stored on an SD card which is filled to capacity as data is collected. As new data is stored on the SD
card, it is buffered and sent to the server. Data is deleted from the SD card at the start of each new
drive.

The accelerometer and GPS/GSM module can use 3.3V or 5V power input which will be provided by
the Arduino, which is powered by the car. The accelerometer and GPS/GSM both use digital I/O, as
does the microSD module, and will transmit data to and from the Arduino using the SDA pin.

The Arduino Uno recommends between 7V and 12V DC power input via USB-B. This is achievable
using the 12V cigarette lighter found in most cars and will be the preferred method of power for
testing. Since it’s possible that a vehicle does not have a 12V cigarette lighter, it’s also possible to
power the black box using an OBD port which is used for diagnostics on all modern cars. OBD
ports output 12V DC, so either method of powering the Uno will be sufficient.

5.2 HARDWARE AND SOFTWARE

The hardware used is an Arduino UNO with accelerometer and miscellaneous modules. For the
purpose of testing, GSM communication/testing will take place after the sensor setup and after we
verify the accuracy of IRI calculations.

Arduino Software IDE will be used to analyze the data taken and determine the accuracy of sensors
and IRI calculations.

Sample tests for Arduino components and sensor data can be done in a lab setup. To test our IRI
calculations, we can compare sample data taken from our device with verified IRI data taken from
the truck provided from the Iowa Department of Transportation. The truck uses a more
sophisticated method of IRI calculation, so we will have to determine an acceptable range of error
to compensate for this, after we are confident in our calculations.

5.3 FUNCTIONAL TESTING
System Tests

● GPS: data accuracy by checking it with other devices
● GPRS: by pinging server with it
● Accelerometer: compare with data recorded by cell phone, compare freefall readings versus

calculated expectations
● SD card: check the data stored by creating a test file, test file format created by other

components stored on SD card match up with expected data
Unit Tests

● Test data collection on a road for which the IRI is known or measured by accurate
expensive systems

● Make sure all collected data reaches the server
● Run variety of dummy data through back-end
● Run variety of dummy data through front-end

Integration Tests
● Back-end will be tested using dummy data then real data with comparisons
● Front-end will be tested using dummy data then real data with comparisons

SDMAY20-32 17

● Front-end tested using webdriver

5.4 NON-FUNCTIONAL TESTING

Performance: Performance testing will be conducted as a way of verifying the accuracy of our
devices sensors and IRI calculations.

Security: The IRI data will be stored and displayed on a web server, some security is necessary, so
only verified users will be able to access this data.

Usability: The usability of our devices will be seen in the setup of our device for use in a new
vehicle. After mounting the ‘black box’ to a vehicle and setting up power, the device should take,
and communicate data without user input indefinitely.

Compatibility: The IRI calculations we are using assume the ‘Golden car model.’ This assumes an
ideal environment for car suspension and dampening, as it is unrealistic to obtain the exact data for
each unique car. Instead, the quarter-car model with ideal parameters is used to obtain close to
accurate results.

5.5 FUNCTIONAL DECOMPOSITION

Figure 5.5: Functional Decomposition

5.6 RESULTS

Due to the global pandemic, we were unable to definitively compare our results to real world
results with a high-end road profile laser rig. Our project does produce logical IRI readings, but
their accuracy is of unknown quality.

SDMAY20-32 18

Figure 5.6-1: Final Black Box Device

Figure 5.6-2: Z-Axis Acceleration Collection and Speed for 73kph Constant Drive

The raw data collected by the accelerometer appears scattered and random at first, so applying a
20-sample moving average is instructional to show that measured z-axis acceleration is centered
around 1 g-force, indicating the force of gravity. On a less constant, longer drive we’re able to see
similar results.

SDMAY20-32 19

Figure 5.6-3: Z-Axis Acceleration with Varied Speed

Notably in this sample, there is significant noise around the end of the drive as the car comes to a
stop. It is worth noting that IRI cannot be calculated when the vehicle is travelling less than 30kph,
so these noisy acceleration values will be filtered out once they are transferred to the server.

This drive lasted 7.11 minutes and produced a log file of 396 kb. With the 8gb microSD card our
prototype uses, this corresponds to 0.000495% memory usage and a maximum of ~23.9 hours of
road collection before the card is filled.

Figure 5.6-4: Final IRI Measurements for Unfiltered and Filtered Data for Smooth Road

For a sample of 3 minutes of driving, we produced 546 IRI measurements each with around 3
meters of road profile. These parameters were discovered programmatically by requiring profiles to
have constant speeds with tolerance of +/- 5kph, contain up to 1000 data points, and the time in
between any two consecutive accelerometer measurements must stay within 200ms.

We applied Kalman filtering techniques to the acceleration and velocity integrated values. Kalman
filtering is a recursive filtering technique that reduces noise efficiently for linear systems. Although
acceleration and velocity values are not necessarily linear, the short durations of our road profiles
do tend to be linear as they cover small stretches of road. What we find through this filtering
technique is a reduction in some the most extreme IRI values, and a system with virtually identical
slope and R squared values.

Our initial testing involved using a liberal value of 0.3 g-forces for acceptable x and y accelerations.
An example output of the IRI values and the speeds associated with them is shown in the following
figure.

SDMAY20-32 20

Figure 5.6-5: Loosely Bound XY-Acceleration Tolerances

With a moving average that is influenced moderately by significant values, we see that there is
significant acceleration affecting the reported IRI values. The periods around samples 150-175 and
samples 320-330 show periods of acceleration of the car, and subsequently correspond to
erroneously high IRI values. We experimentally reduced the acceptable g-force threshold down to
0.2 g-forces accepted. We left this value relatively high because the x- and y-axis on our
accelerometer are not automatically recalibrated for inclines, so minor hills where IRI calculations
are still valid need some tolerancing. Tighter bounds result in sparser regions of acceleration as
shown in Figure 5.

Figure 5.6-6: Tighter Bound XY-Acceleration Values

There are a few interesting things to interpret here. First, we note that during long periods of high
constant speeds ~88kph, the average IRI tends to be lower than the average IRI over this sample.
This correlates to our expectation that higher speeds experience less vertical displacement as minor
bumps are sped over and have little effect on the car.

Next, we note that the samples are largely many IRI values at constant speed, with some IRI values
calculated for profiles that appear to be occurring during times of acceleration. An initial
assumption is that our x-axis acceleration rejection bound is loose, allowing some calculations of
IRI during times of acceleration. We consider this hypothesis by comparing speed to distance
traveled. If it is indeed the case that we are accelerating at unacceptable rates, we will see that the
periods that appear to be acceleration in the previous figure will correspond to shorter distances
traveled. That is, if the car is accelerating and leaving its current speed before we are able to

SDMAY20-32 21

measure an adequate sample, the distance the car traveled will be shorter. So, distances traveled
between 30 to 55kph and 75 to 85kph will be shorter if this hypothesis is correct.

Figure 5.6-7: Comparison of Vehicle Speed During IRI Sample to Distance Traveled During Sample

Figure 5.6-8: Regression Analysis of Distance Traveled and Speed Over IRI Samples

What we find instead, however, is that these periods do not correspond to significantly shorter
distances measured. In fact, there is a weak negative linear correlation to this relationship. This
data is not necessarily conclusive since we have only two significant periods of constant speed, but
this is the relationship that would be expected, since higher speeds will fill out the upper limit of
the profile samples more quickly.

What we can conclude is that our initial hypothesis was wrong; the IRI values reported for 35 to
55kph and 75 to 85kph, although indicative of acceleration, correlate to relatively slow acceleration.
Clearly the IRI values calculated during this time are anomalous, but also uncommon enough that
they do not have tremendous impact on the final IRI trends. Still, further research needs to be
conducted into filtering out periods of acceleration.

To produce these graphs, users take the microSD cards from the black box and upload it to our
front end website.

SDMAY20-32 22

Figure 5.6-9: User Interactable Log Upload Form With Dynamic IRI Measurement Display

In the future, mapping software can be used to visualize the results of IRI calculations. This will
allow easier interpretation and identification of rough stretches of road.

6. Closing Material

6.1 CONCLUSION

The goal for this project was to create a black box system to calculate the International Roughness
Index for the Iowa Department of Transportation. This black box system was to be implemented
into Iowa DOT’s fleet of vehicles to provide the department data which they can then use to
prioritize road work in the future.

We have worked on a lot of different aspects through the course of our senior design project, we
have tested different hardware combinations, programming languages and mathematical formulas;
resulting in our final prototype, which has undergone some testing and through a few different
configurations. Our prototype performs the basic functions that we had set out to accomplish, but
will require further work to implement the wireless transmission and data processing.

A few changes that could be made to the device would be:

● Swap 2G for faster 3G or 4G network
● Dynamic accelerometer orientationing for inclines and declines
● Multithreaded processor on microcontroller for simultaneous data transmission &

recording
● Faster processor on microcontroller for quicker acceleration polling

SDMAY20-32 23

6.2 REFERENCES

Abudinen, Daniel & Fuentes, Luis & Carvajal-Muñoz, Juan. (2016). Development of
Thresholds for Travel Quality Assessment In Colombian Urban Roads.

Alvarez, E. J. Z. (2016). A Discrete Roughness Index for Longitudinal Road Profiles. Virginia
Polytechnic Institute and State University. Retrieved from
https://vtechworks.lib.vt.edu/bitstream/handle/10919/64452/Zamora_Alvarez_EJ_T_2016.p
df.

Roadroid. (2019). V2PRO.

Sparkfun.com. (2019). Accelerometer, Gyro and IMU Buying Guide - SparkFun Electronics. [online]
Available at: https://www.sparkfun.com/pages/accel_gyro_guide [Accessed 20 Nov. 2019].

Yuchuan Du, Chenglong Liu, Difei Wu, and Shengchuan Jiang, “Measurement of International
Roughness Index by Using -Axis Accelerometers and GPS,” Mathematical Problems in
Engineering, vol. 2014, Article ID 928980, 10 pages, 2014.
https://doi.org/10.1155/2014/928980.

6.3 APPENDICES

APPENDIX A DATASHEETS

PMOD NAV 9-AXIS IMU/BAROMETER
https://www.st.com/content/ccc/resource/technical/document/datasheet/1e/3f/2a/d6/25/eb/48/46
/DM00103319.pdf/files/DM00103319.pdf/jcr:content/translations/en.DM00103319.pdf

ARDUINO UNO REV3 SMD
https://media.digikey.com/pdf/Data%20Sheets/Arduino%20PDFs/A000073_Web.pdf

Adafruit FONA 808 Cellular + GPS Shield for Arduino
https://cdn-learn.adafruit.com/downloads/pdf/adafruit-fona-808-cellular-plus-gps-shield-for-ardui
no.pdf

MicroSD card module for Arduino
https://media.digikey.com/pdf/Data%20Sheets/DFRobot%20PDFs/DFR0229_Web.pdf

SDMAY20-32 24

https://doi.org/10.1155/2014/928980
https://www.st.com/content/ccc/resource/technical/document/datasheet/1e/3f/2a/d6/25/eb/48/46/DM00103319.pdf/files/DM00103319.pdf/jcr:content/translations/en.DM00103319.pdf
https://www.st.com/content/ccc/resource/technical/document/datasheet/1e/3f/2a/d6/25/eb/48/46/DM00103319.pdf/files/DM00103319.pdf/jcr:content/translations/en.DM00103319.pdf
https://media.digikey.com/pdf/Data%20Sheets/Arduino%20PDFs/A000073_Web.pdf
https://cdn-learn.adafruit.com/downloads/pdf/adafruit-fona-808-cellular-plus-gps-shield-for-arduino.pdf
https://cdn-learn.adafruit.com/downloads/pdf/adafruit-fona-808-cellular-plus-gps-shield-for-arduino.pdf
https://media.digikey.com/pdf/Data%20Sheets/DFRobot%20PDFs/DFR0229_Web.pdf

APPENDIX B FIGURES & DIAGRAMS

Figure App. B-1: Embedded Code Flow Diagram

Figure App. B-2: Back-End Relation Diagram

SDMAY20-32 25

